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In this paper, the acoustic impedance of a liner is educed by a novel semi-analytical inverse technique. The liner
sample is placed flush with the solid walls in a rectangular duct with grazing flow. The technique uses complex
acoustic pressure measured at four positions at the wall of the duct, upstream and downstream of the lined section,
and educes the impedance with a mode-matching method. Previous studies neglected grazing flow nonuniformity
and the pressure discontinuity that appears at the liner-wall boundary caused by the discontinuity of the acoustic
particle velocity into the wall. In the present paper, the mode-matching formulation is rederived in terms of pressure
instead of velocity potential which is found to be more numerically stable. Moreover, the proposed methodology is
validated with benchmark data from an experiment performed by NASA. First, the ability of the code to reproduce
the pressure field for a given impedance is tested. Second, the ability to educe the correct impedance for a given
pressure distribution is tested. The results of the mode-matching code are in very good agreement with the
experimental data. The effect of shear flow is investigated and it can be concluded that the assumption of uniform flow
is appropriate for the chosen liner, duct size, and frequency range of interest.

Nomenclature

A = admittance of the liner, 1/rayl

a = half the width of the duct, m

a?, a@ amplitudes of the incident and reflected gth mode in
the inlet hard duct, Pa

b, b = amplitudes of the incident and reflected gth mode in
the lined duct, Pa

cgf[), ¢ = amplitudes of the incident and reflected gth mode in
the outlet hard duct, Pa

j = complex unity

k = normalized wave number = (w/c) - a

k9 k9 = normalized transversal wave number in the x and y
directions, respectively

k9 = normalized axial wave number of the gth mode

L = normalized length of the lined duct

M = flow Mach number

P = temporal Fourier transform of the pressure, Pa

q = mode number

U, w = unsteady velocity field in the x and y directions,
respectively, m/s

XV, 2 = normalized Cartesian coordinates x := x/a; z

coordinate in the direction of the duct axis
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w(q)

two-dimensional mode shape of the gth mode after
separating the z dependence

L

IRCRAFT engines are major contributors to the overall aircraft

noise. In modern high-bypass turbofan engines the nacelle,
bypass, and exhaust ducts are acoustically treated with liners to
reduce fan-generated noise. To fully benefit from the liner duct
treatment in future aircraft engines, it will be necessary to optimize
liner treatment design. Such optimization will depend on the ability
to accurately predict liner impedance properties for a given liner
geometry and design by use of suitable analytical, semi-empirical,
and/or numerical models. All models need to be validated by
comparing with experimental results, even though semi-empirical
models use experimental results as a part of the model development
process. A continuing concern in treatment technology is the
accurate determination of the normal incidence impedance of an
acoustic material subject to grazing flow which is known to add many
complications to the measurements.

The normal incidence acoustic impedance of passive linear
materials can be experimentally determined in several ways. The first
known method is the standing wave tube method which has been a
commonly used procedure for impedance measurements for over
80 years [1]. The development of fast Fourier algorithms and its
implementation in laboratory analyzers provided new possibilities.
The standing wave method evolved to an easier and more accurate
method using fixed microphone positions, the two-microphone tech-
nique. Seybert and Ross [2] were able to separate the incident and
reflected wave spectra from measurements of auto- and cross-
spectral densities between the microphones. This method has been
used extensively and has become an International Organization for
Standardization method [3]. A modified version of this method is
used in this paper to decompose the acoustic fields in the hard ducts
before and after the lined section, to determine the reflection
coefficient perpendicular to the duct axis.

Another very widely used method is the in situ technique. Dean [4]
introduced this method in 1974 and, since then, it has been
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extensively used to measure the impedance of locally reacting
acoustic liners with and without flow. Several drawbacks and
problems have been reported with the use of this method. There are
usually strong near-field effects which influence the reading of the
surface microphone. These effects are even stronger with grazing
flow. Moreover, the in situ method becomes more complicated when
there is, for example, porous material inside the liner so that the
sound propagation inside the cavity is more difficult to predict.

Another trend in acoustic liner impedance measurement tech-
nology is the use of indirect approaches, which depend only on the
measurement of the acoustic pressure at selected locations outside
the liner. These indirect methods have an extra advantage of not
destroying the sample by drilling holes for the transducers which
requires precision instrumentation of the liner sample. Inverse tech-
niques based on propagation models for the lined duct are therefore
becoming popular because of their convenience and advantages.

The classical approach, the so-called infinite-waveguide method,
involves measuring the sound attenuation properties of an assumed
single, unidirectional propagating mode, in a waveguide lined with
the acoustic material over a sufficient length to be effectively infinite.
These data are then used with the solution to the wave equation in an
infinite waveguide to establish the impedance of the material at the
boundary. The evolution of waveguide models for this purpose began
over 20 years ago with a uniform mean flow model [5]. Infinite-
waveguide models are applicable, in a very straightforward manner,
to situations for which a single mode propagates within the wave-
guide containing the unknown material. However, many conven-
tional liner concepts generate more complex acoustic fields. Thus,
measured data must now be interpreted as the superposition of many
propagating modes.

Watson et al. [6] developed this approach further and presented a
finite-element-based numerical method for educing the impedance of
an acoustic material placed at the wall of a two-dimensional duct that
conveys a multimodal sound field. Their proposed method depends
on the measurement of acoustic pressure at selected locations at the
upper wall of a rectangular duct to determine the normal incidence
impedance of the material placed at the lower wall. These measure-
ments are then used as input to a finite element propagation model to
extract the impedance of the material. They first tested the method
with input data computed from modal theory and contaminated by
random error. Then they validated the impedance extraction method
using measured data and a finite length liner [7]. Later, Watson et al.
[8] used the Davidon-Fletcher-Powell optimization algorithm to
educe the impedance that minimizes the difference between the
measured and the numerically computed upper wall pressure. After
developing and validating the method for the no-flow case, they
could reproduce the measured normal incidence impedance in a
uniform flow [9]. They later showed that the liner resistance educed
in the presence of shear flow can differ from that educed when only
uniform flow is modeled [10]. The effect of shear flow on the
reactance of the liner was not significant. They developed their code
further to be able to handle segmented liners in the circumferential
and axial directions (checkerboard liners) [11]. Further development
of their code has included optimization of the position of the micro-
phones for acoustic pressure measurements [12] and an investigation
of the problems occurring near antiresonances or the cut on of higher-
order modes [13].

Leroux etal. [14] proposed a method based on the measurement of
the scattering matrix of the lined section using the two-source
method. The transmission and reflection coefficients before and after
the lined section can be calculated from the transfer matrix. They
proposed a new theoretical model called “Scattering Matrix by
Multimodal Method” to compute the scattering matrix of a lined duct
with flow. The basis of this method is to project the propagation
equations on a complete set of basis functions. They used uniform
mean flow reasoning that shear flow does not affect the transmission
coefficients. In their first attempt, they used a minimization criteria
based on any of the measured scattering matrix coefficients. Different
coefficients resulted in different values for the liner admittance.
Allam and Abom [15] published a different technique based on the
transfer matrix to determine the impedance of a perforated wall

connecting a duct with flow and a surrounding cavity with extended
reaction.

Elnady and Bodén [16] developed a semi-analytical indirect
method to determine the acoustic impedance of a liner sample, placed
inside a rectangular duct with grazing flow, from measurement of
complex acoustic pressure at several positions inside the duct. The
amplitude of the plane wave incident toward the lined section and the
reflection coefficient at the exit plane are required as input to the
model for sound propagation through the lined section. The coupling
at the liner inlet and outlet was handled using mode matching. The
impedance value which gives the best match between the calculated
sound field and the measured one was found using an optimization
technique. In this technique, the flow was assumed uniform, whereas
any real duct flow will be nonuniform. Furthermore, it is assumed
that there is both continuity of pressure and axial particle velocity at
the boundary for mode matching between the adjacent ducts. These
two assumptions together may result in some errors close to the
hard—soft and soft-hard boundaries. These erroneous assumptions
result in a discontinuity of the pressure profile at these points
matching points. Elnady and Bodén [16] assumed that the pressure
field away from this discontinuity represents the actual pressure field,
and that the mode-matching code can be used to determine the correct
liner impedance. The results in this paper will be compared to
the experimental work by Jones et al. [17]. In their experiment,
they published data for the evaluation of aeroacoustic propagation
codes with grazing flow for different liners, Mach numbers, and
frequency.

In this paper, we will first perform a straightforward validation of
the code. Using the strength of the incident pressure wave, the exit
impedance, and the liner impedance as input data, the pressure profile
in the lined section is calculated. The calculated pressure profile at the
wall opposite to the liner is then compared to the measured pressure
magnitude and phase. Then, an inverse validation is shown. The
input data in this case are the strength of the incident pressure wave,
the exit impedance, and the pressure profile. The model predicts the
impedance using an optimization technique and is then compared
with the benchmark data [17]. In this paper, we will show that only
the data from four microphones are needed to properly educe the liner
impedance. Two of these are placed upstream of the liner and the
remaining two downstream. To enhance the numerical stability in
the mode-matching technique, a novel formulation for the mode
matching is developed based on the pressure as the independent
variable instead of the velocity potential. It was found that the new
formulation is more stable and can determine the correct impedance
more accurately.

In a previous investigation, Watson et al. [18] suggested that
including shear flow effects in their finite element code improved the
results. Pridmore-Brown [19] also noted that the effects of the mean
flow shear are important and should be taken into account. It was
shown that the downstream propagating modes refract into the
narrow boundary layer at the wall. However, this effect is frequency
dependent and is only relevant at high frequencies. Brooks and
McAlpine [20] recently published a paper on the prediction of sound
transmission in a lined annular duct with sheared mean flow where
mode matching was used to determine the sound power transmission
loss. Itis therefore of interest to include the effects of shear flow in the
analytical mode-matching code to investigate how this will influence
the results. This will also be of importance for the problem of the
discontinuity in the pressure field at the hard—soft boundary. For
uniform mean flow in a duct, the unsteady duct modes can be
evaluated iteratively using the dispersion relation [21] for the appro-
priate wall conditions. However, for nonuniform flow, the unsteady
modes must be obtained numerically by solving the linearized Euler
equations as an eigenvalue problem. Such an eigenvalue problem
will yield three discrete sets of solutions: hydrodynamic modes,
surface modes, and acoustic modes. The hydrodynamic modes typi-
cally represent the rotational (vortical) disturbances and incoming
gusts, and are referred to as nearly convected modes, because they are
almost pressureless [22]. There can be a maximum of four surface
modes [23]. Such modes are characterized by high pressure at the
liner surface that decays rapidly in the duct. The acoustic modes
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propagate downstream and upstream and are typically characterized
by large pressure content. In this paper, we examined the sensitivity
of the acoustic modes (axial wave numbers and pressure mode
shapes) to the shear flow profile at the frequencies of interest to
investigate the validity of the mean flow approximations.

II. Theory

The wave propagation across the lined section inside the duct is
described in Fig. 1. The sound source produces an incident plane
wave p;;, which travels toward the lined section and is scattered at
z=20 into a reflected p,, and transmitted p,; wave. The waves
propagating in the lined duct are further scattered at z = L into
reflected p,, and transmitted waves ps;. The transmitted wave is
further reflected giving p;, at the outlet side of the test rig. The
numbering of the fields is as follows: 1 for the inlet hard duct, 2 for
the lined duct, and 3 for the outlet hard duct. The letter i refers to the
incident wave and the letter r refers to the reflected one. A stationary
problem is considered in which all the fields and their derivatives are
time harmonic with /', When the direction of the mean flow is in the
axial direction, the wave equation for uniform flow reduces to

2
Vzp—(jk-f-Mi)p:O (1)
0z

The wave numbers are scaled as k := ka and, consequently, the
distances are scaled as x := x/a, where a is the duct hydraulic radius.
Every solution of the eigenvalue equation corresponds to a propa-
gating mode, each satisfying the same wave equation and boundary
conditions. The acoustic field is a summation of all incident and
reflected modes.

A. Duct Modes with Uniform Flow

In the inlet and outlet ducts, the cross section is rectangular and all
walls are hard. The modes can be easily calculated assuming that the
normal particle velocity vanishes at all walls. Because the boundary
conditions are symmetric, symmetric and antisymmetric modes can
exist in each direction. For symmetric modes, dp(x,0)/dy = 0 and
the mode shape is 2 cos(k,,y). For antisymmetric modes, p(x,0) =0
and the mode shape is 2j sin(k,y). Consequently, the normalized
wave numbers in the x and y directions are

k,=mmn/2 and k,=nnw/2 where m,n=0,1,2,... (2)

The dimensions of the hard ducts are chosen together with the
frequency range so that only plane waves are allowed to propagate.
This condition is necessary for the two-microphone method [24] to
be applied. This means that only plane waves can be incident in the
inlet duct @ and reflected in the outlet duct ¢("). All other higher-
order modes in the hard ducts, which are generated at the interfaces
with the lined section (a9 and ¢'?"), decay exponentially with the
axial distance. Nevertheless, they exist in the vicinity of the interfaces
and have to be taken into account. The acoustic fields in the inlet and
outlet ducts are thus given by

0
() ()
Py, ) =al gy et 4 E a@ Yl R (3)
g=1

Mic 1 Mic 2

and

Q
(1) 2@
pa(ey.2) =Y e yPe e g Wyl Rl @)
g=1

where ¥/ and ¥\ are identical and given by

PO = g = { 2cos(kx) | [ 2cos(kPy) ®)
! 3 2jsin(k%x) J | 2jsin(k"y)

In the intermediate lined duct, the liner is placed at x = —1 (Fig. 2).
In the y direction, the situation is similar to the hard duct, and the
wave numbers in this direction &, can be found from Eq. (2). In the x
direction, the boundary conditions are not symmetric. At x = 1, the
wall is hard and, at x = —1, the duct is lined with a locally reacting
liner. In the presence of inviscid mean flow, the velocity perturbations
at the wall differ from those near the wall. Therefore, Myers [25]
corrected for this effect and showed that the fluid particle displace-
ment near the wall is equal to the wall particle displacement. This is
an acceptable assumption when plug flow is assumed. The boundary
conditions can be written as

9p/0x, =0 (©)

and
M 0)\?
Ip/0x|—y = jKA{ 1 = j—) Pliem 7
k 0z

Substituting the modal expansion into the two boundary conditions,
one gets the eigenvalue equation

A
ka tan(zknﬂ) —J E (k:2712 + k§2)2 =0 (8)

which is combined with the dispersion relation

k / k2
kzzzm[—Mi 1—(1—M2)ki22i| )

to find the wave numbers in the x direction k,,,. Each mode in the
lined duct is finally represented by
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Fig. 2 Cross section in the lined duct.

Mic 3 Mic 4

P, P,
Sound | |\ M—) A 7B
Source Py P

Ir

\ b Pe P
n, <A gk

3r

Inlet Hard Duct

Z

Lined Section =L Outlet Hard Duct

Fig. 1 Incident, reflected and transmitted waves in the calculation domain.
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P —b(‘l)[ejkmz -|-e’fk(qu)(x’2)] ZCOS(k )’) o IkYz (10)
2jsin(k”y)

where k,,, has two values, one for each direction, k,,,; and k,,,.
Every solution of the eigenvalue equation corresponds to a propa-
gating mode. The acoustic field is the summation of all incident and
reflected modes:

0 0
() @)
pr=) by e £ Y by e )
g=1

g=1

where V,; and V,, are the mode shapes of the incident and reflected
waves, respectively.

B. Mode Matching

Because the incident mode p is plane (m = 0, n = 0), and there
is no change in the impedance at the boundary in the y direction along
the duct axis, the k, wave numbers remain equal to zero. The problem
is then reduced to two dimensions. Mode matching is a well-known
technique which is used to determine how energy is transferred and
scattered between modes at an interface where there is a discontinuity
in either duct dimensions or boundary conditions. The formulation
presented in [26] is valid for any cross section with flow, as long as the
fields in the three ducts are predetermined and provided that the liner
in the intermediate duct is of the locally reacting type. The boundary
conditions at the interface between two adjacent ducts implies the
continuity of acoustic pressure and axial velocity atz =0andz = L

Pi(x,y,0) = p,(x,,0) (12)
and
pa(x,y, L) = p3(x,y,L) (13)
0 @ 0 @
Z o) /8<Z> = Z e /8<Z> (14
q:](k:Fqu) = (k¥ Mk3) |=
and
0 @ 0 @
DI e e e a3
= (kF MES) |.= 1 (kF MES) |.=

The negative sign is for the waves traveling in the positive z
direction and the positive sign for the waves traveling in the negative
z direction. According to the theory of relative convergence, the
number of considered modes in both ducts must be equal as long as
their areas are equal. The acoustic fields are substituted in the
boundary conditions (12-15), multiplied by 1//(”), where u=
1,2,..., O, and then integrated over the cross section. After careful
manipulation, the axial boundary conditions yield the following set
of independent equations

0 0 2
al Aff+ Y aW AL =Y BPAL 4D bOAL e (16)

g=1 g=1 g=1

0
Z c(q)AfIM[l + R(q)] Z b(‘I)Aqu —jk9-L Ly Z b(q)Aqu (17)
=

q=1 g=1

(I)Aluk(ll Z Aquk(?)
zli zlr

k—MKS =k MES)
) B AL, KD e as)
k—MES = k+ MEY)
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k—MKD  k+ MKY

q=1 23r

u(q) —j (@), u
_ XQ: by Agilkzgl.e koL B XQ: b(q)Agrlk(vg)r o)
= k- Mk = k+ MES,

where RE‘” is the exit reflection coefficient and is defined as
Rgd) — C(_‘I)/CS‘_]) (20)

Itis equal to zero for all modes except the plane mode. A is defined as
aw_ " " @y
Apy = vy Yy dxdy 21
—1J-1

Equations (16-21) are rearranged and written in matrix form as
follows

2@ 7
qu _Aqu _Aqu _/k~ L
A 0 A%y Ag e
0 ABIHRD]  —Afheat AL
31 e 2i1€ 7F 2rl
O
AR 0 _ABKS Ak
k+MED. K=MK k+Mkl7")r
_ @)
0 ABCAL R ami
L 3UN-MED) kD) =Mk k+Mk£":v
a(,‘“ _a+ A
(q)
o e R I (22)
b(‘i) e T
+ [
(9)
b 0

All unknown modal amplitudes are calculated by solving the
preceding system of linear equations in 4Q unknowns (a'?, c(q)
b'?, b)), This requires the knowledge of the complex values of @'’
and R". To achieve the full advantage and speed of the mode-
matching method, all integrals are evaluated analytically. One advan-
tage of choosing the eigenfunctions in the hard duct as the basis
function is that they are orthogonal: a property which reduces the
number of nonzero coefficients. All As in Eq. (22) can be evaluated
from the following relations:

64 u=0
Aff=6,47 32 u=even (23)
—32 wu=odd
and
64 K = k9 u=0
32 K = k9 u = even
-32 K = k9w = odd
A 0 @ (“) # 0 kE:L]Z) B
= 3k, —jky ( ) A
21 ksz’ [e? - e /m] k"l:] = q ;é 0
(@) .
k(l,,ﬁ,Jk]”(@, [e¥hm2 — e~Ihun] cos(k"™))  otherwise, u = even
ml m2
—16k\) 3@ .
k(,¢,6 2 [ — e~n]sin(k"))  otherwise, u = odd
ml~ "m2

(24)

C. Duct Modes with Shear Flow

To examine the effect of flow nonuniformity, the linearized Euler
equations will be solved as an eigenvalue problem. The flow is
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assumed two dimensional (which is a valid assumption for low
frequencies at which no higher-order modes propagate) and isen-
tropic. The linearized Euler equations for time harmonic waves are
expressed by

. 0 __op
(jk—l—Ma—z)pOu——g

. 0 oM ap
(]HMETZ)”“’””’)OW__ZTZ
) w9
kM=) p+ypo[ £ +22) =0 25)
0z dx 0z

Furthermore, the mean pressure gradients dp,/dx have been
neglected as typically assumed in the boundary-layer assumptions.
Typically, the unsteady velocity and pressure waves are expressed in
terms of a normal Fourier mode expansion

u, o oo [ u,(x)
u, o(x,z;0) = / Z w,(x) re /% idw (26)
p T =l pa(x)

where n is an integer. Substituting the Fourier expansion into
Eq. (25), the linearized Euler equations reduce to the eigenvalue
problem

9 )
L k. (jM pyu)

" _
Jkpou + ox

. oM . ,
Jkpow + upy 5 - = k.(jMpow + jp)
. du . .
Jkp + YPog = k.(jMp + jypow) 27

Note that, unlike the case of a uniform axial mean flow, this is not a
Sturm-Liouville eigenvalue problem. Therefore, there is no proof of
completeness or orthogonality of the eigenfunctions. The boundary
conditions on the walls atx = —1, 1 are given by Eqgs. (6) and (7) and
can summarized in the following relation:

u=%j4 (jk + Mi)p (28)
k 0z

where A is the normalized admittance (equal to zero for the hard
wall). Here, the negative sign is for x = 1. Different numerical tech-
niques can be used to solve this eigenvalue problem (27). A wealth of
literature on the numerical analysis of this problem together with a
detailed comparison of various numerical approaches can be found in
[21]. The finite differences method is the easiest and the simplest
numerical method, in which the system of differential equations is
discretized giving a system of algebraic equations of the form

[A)Jv =k [B)]v (29)

where [A, ] and [B, ] are matrices resulting from the discretization of
the differential equations, v is a vector of eigenfunctions, and k_ is the
eigenvalue. For classical finite difference and finite element
techniques, the matrices [A;] and [B;] are sparse, however, the
accuracy of the solution is poor [22]. Spectral methods, which are
typically used with linear eigenvalue problems, have been used in a
number of investigations giving good performance [27]. In these
methods, the eigenfunctions are represented by a series of functions
which represent a complete orthogonal set, like Chebyshev poly-
nomials, ending up with a system of algebraic equations of the form
of Eq. (29). This method has exponential convergence and can
resolve thin layers of steep gradients. The main two disadvantages of
this method are that the matrices [A, ] and [B, ] are not sparse, which
may lead to difficulties in solving the eigensystem as the number of
grid points increases, and the introduction of some spurious modes.
For two-dimensional problems, the increase and penalty in time to
compute the eigensystem is not severe. The spurious modes,
however, must be eliminated. Such modes are characterized with

very high oscillations and are produced by aliasing from the spectral
techniques. These modes are best eliminated by verification of the
eigenvalues using a shooting technique once the solution is obtained
and used as an initial guess to the shooting algorithm [28].

III. Description of the Benchmark
Data and Validation Scheme

The grazing incidence tube test section, used in [17], has internal
dimensions of 0.051 x 0.051 m. The length of the measurement
section is 0.812 between the entrance plane and the exit plane where
the first and last microphones are located. The tube contains an
axially centered test liner with a length of 0.406 m. The surface of the
test liner forms the upper wall of the flow duct. Elsewhere, the test
section side walls are rigid, with a source upstream of the liner and a
nearly anechoic termination downstream of the liner. A ceramic
tubular liner was used. This liner has been shown to be nearly linear
with respect to mean flow velocity and sound pressure level (SPL),
and provides an impedance spectrum that varies over a range typi-
cally observed in aircraft engine nacelle liners. Data were acquired
with 31 microphones mounted flush to the wall opposite the liner.
Three microphones were located upstream of the liner, three micro-
phones were located downstream, and the other 25 microphones
were located in the lined section.

Several test cases were reported in the provided data for different
settings. The sound pressure level at the source plane was 120, 130,
and 140 dB. The frequency range was 500-3000 Hz with 100 Hz
step. Average Mach numbers were 0, 0.079,0.172, 0.255, 0.335, and
0.4. Detailed mean flow profiles were acquired at three axial
locations along the duct. Numerical integration was used to compute
an average Mach number for the selected axial plane. Finally, the
average Mach numbers for each of the three axial planes were
averaged together to attain the final average Mach number. This is the
value which was used with the plug flow assumption.

The analytical educing technique described in the previous section
needs the amplitude of the incident pressure wave toward the liner
at the liner leading edge and exit reflection coefficient at the liner
trailing edge. These quantities are measured using the two-
microphone technique on both sides of the lined section. They are
then moved to the edges of the liner (z = 0 and z = L). The first two
microphones (positions A and B in Fig. 1) on the upstream side are
used to calculate the amplitude of the incident pressure wave at
microphone B at z = —0.1778 m and then moved to the reference
plane at z = 0 using

. 1—H,»- ks
a(+l) — _Ps ), e/k+2 where Ry = #;{e
1+ Rg Hyp-e" =1

(30)

where z; is the distance between point B and the leading edge of the
liner. The last two microphones (positions C and D) on the
downstream side were used to calculate the reflection coefficient at
microphone D and then moved to the trailing edge of the lined section
at z = L to obtain the exit reflection coefficient

1= H - elk+s )
cp € -

where 7, is the distance between microphone D and the trailing edge
of the liner. This value was compared to the exit impedance at the exit
plane provided in [17]. They were slightly different and it was
decided to use the calculated values from equation.

As soon as both ag) and R'" are known, the system of Egs. (22)
can be solved and the pressure field in the entire duct can be
determined. The liner impedance should be known at this stage to
calculate the wave numbers within the lined section and the mode
shapes. In this paper, the validation of the mode-matching educing
technique is done in three steps:

1) Straightforward validation of the code: Using the strength of the
incident pressure wave, the exit impedance, and the liner impedance
educed in [17] as input data, the pressure profile in the lined section
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was calculated. The calculated pressure profile was compared to the
measured pressures in magnitude and phase at the wall opposite to
the liner.

2) Inverse validation of the code: The input data in this case were
the strength of the incident pressure wave, the exit impedance, and
the pressure profile. The calculated impedance was compared with
the educed impedance values provided in [17]. An arbitrary value of
the liner impedance (1 + i) was usually used as a starting guess and
used to calculate the modes in the lined duct. Mode matching is then

performed using the measured a(+1) and R, to calculate the acoustic
pressure at the wall microphones. The calculated values of the
pressure are compared to the measured values. A new value for the
impedance at the boundary is set and the same procedure is repeated
until the measured wall pressures can be reproduced. A code was
developed for using a minimization algorithm with the following cost

function:

N
cost = Z |pzleasured _ pslalculated| (32)
n=1

Note that this positive-definite objective function may be interpreted
as the difference between the measured acoustic wall pressure and
that computed by the mode-matching code. The minimization was
performed using the Matlab function “fminsearch” which uses the
simplex search method [29]. The simplicity of the original analytical
educing technique in [1] was based on the use of only two micro-
phones upstream and two microphones downstream the lined
section. These four microphones are necessary and sufficient to
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Fig. 3 Comparison of the pressure profile between the mode-matching code and NASA datain[17] at 1500 Hz, M = 0.079, incident SPL
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resolve the plane wave sound field in the inlet and outlet hard ducts.
Therefore, only these microphone readings (instead of 31) were fed
to the minimization algorithm.

3) The results from the previous two steps showed good agreement
between the mode-matching code and the benchmark data provided
by NASA. It was interesting to further investigate the validity of the
uniform flow assumption and the sensitivity of the results to shear
flow effects. Another code was constructed to solve for the modes in a
rectangular duct lined from one side in the presence of shear flow.
The shear flow profile was given in [17]. The axial wave numbers and
mode shapes were compared to the uniform flow case for some
frequencies and flow speeds.

IV. Validation of the Uniform Flow
Mode-Matching Technique

The results from the straightforward validation of the code are
presented in Figs. 3 and 4. The figures compare magnitude and phase
of the measured wall pressures measured at 31 microphone locations
given in the benchmark data to the calculated pressures using the

mode-matching (MM) code. The calculated results used the a(+” and

R" determined using microphones upstream and downstream of the
lined section. The impedance fed to the mode-matching code is that
provided by NASA, which they educed based on the pressure
measurements using a finite element code. The MM code was
validated at all test conditions given in the data and an example is
shown in Figs. 3 and 4. For each test case, the plot shows the results
for three different calculations. The difference is the number of
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Fig. 4 Comparison of the pressure profile between the mode-matching code and NASA data in [17] at 2500 Hz, M = 0.335, incident SPL = 140 dB, and

impedance 0.93 — 1.43i.
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Fig. 6 Comparison of the educed impedance by the mode-matching
code and the NASA FEM code using four microphone positions at
M =0.255.

modes considered in the field expansion inside the ducts. One, 3, and
10 modes were used. There is hardly any difference between the
results using 3 or 10 modes. They are both very similar to the results
obtained using only one mode except at the liner edges where there is
a discontinuity in the pressure field. Nevertheless, the fields away
from the edges are almost identical for the three calculations and in
good agreement with the measurement data.

The next step was to perform an inverse validation of the mode-
matching code. This means that the code determines the impedance
that best reproduces the measured pressure field, as described in
Sec. II. It is obvious that increasing the number of microphone
positions used in the minimization algorithm should improve the
accuracy of predicting the correct impedance.

In the beginning, data from all the 31 microphones provided by
NASA in the benchmark data was used. Then, only data from four
microphones, the first and last on each side was used. The results
were not very different. Figures 5 and 6 show the comparison
between the real and imaginary parts of the impedance determined by
the mode-matching code and educed by the NASA finite element
method (FEM) code. The plots show the result of the mode matching
when using 1, 3, or 10 modes in the field expansion. The impedance
determined by the mode-matching code agrees well with the
impedance given in the benchmark data. There is insignificant
difference between the mode-matching results using different
number of modes. This indicates that the propagation in the lined
section is mainly governed by the attenuation of the fundamental
mode.

V. Shear Flow Investigation

In this paper, mode matching has been used to predict the local
impedance characteristics of new test liners. Such matching has been
based on the assumption of uniform flow and that the effects of
nonuniformity are small and negligible. In this section, we wish to
examine if such effects are indeed small and can be neglected for the
benchmark tests performed, and whether or not there are limitations
to such assumptions. A sample of the actual flow profile during one of
the measurements in [17] is shown in Fig. 7.

The numerical solution contains hydrodynamic, surface, and
acoustic modes. Both hydrodynamic and surface modes must be
filtered. As previously mentioned, the hydrodynamic modes are
nearly pressureless. Hence, it is possible to filter such modes by
examining the normalized pressure eigenvectors and by elimination
of the pressureless modes. Furthermore, most of the axial wave
numbers of the nearly convected hydrodynamic modes can be found
within the range ®/Up. <k < ®/Up,. Such a condition is
obtained by setting the convected eigenvalue to zero, which is the
condition of pure convection. Surface waves are called that way
because their pressure field is only significant close to the wall, with
very steep exponential decay away from the wall. They are
essentially 2-D waves and independent of the duct geometry, and are
a consequence of the grazing flow in lined ducts [23]. These modes
attenuate rapidly along the duct (high real and imaginary parts
associated with the eigenvalue) and are associated with the fluid-
structure interaction and surface vibration. Such characteristics make
them easily detected. Figure 8 presents the eigenspectrum for one of
the test cases. The spectrum clearly contains all three types of modes:
acoustic, hydrodynamic, and surface modes.
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Fig. 7 Shear flow profile of the test case investigated in this paper at the
centerline of the duct; mean flow Mach number is 0.335.
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Figure 9 examines the sensitivity of the eigenvalues and pressure
modes to the nonuniform mean flow for the case of hard walled duct.
This is important because the acoustic waves propagate in the hard
ducts up and downstream the lined section, where the microphone
measurements take place. It is clearly seen that, for the range of
reduced frequencies considered, the differences in the axial wave
number is small and that the pressure modes are nearly plane waves.

Figure 10 compares the pressure modes shape with a line
impedance = 0.73 — 0.244, at the highest test frequency of 3000.
Again, we see that the differences between the uniform flow
approximation and the measured velocity profile are very small.
Table 1 compares the axial wave numbers of the first and second
modes for plug flow and sheared flow. As evident from the results, the
changes in the values are small (less than 5%), especially for the first
mode which dominates the propagation inside the duct. This means
that these differences would probably have a small effect on the
educed impedance.

Table 1 Comparison between the calculated eigenvalues
using plug flow and sheared flow

Uniform plug flow Sheared flow

First mode Downstream  0.9891 — 0.2289i 0.9656 — 0.2162i
Upstream —1.8848 4 0.0704i —2.0065 + 0.0711i

Second mode Downstream  0.7298 — 0.5858i 0.6421 — 0.5965i
Upstream —0.9921 + 1.6497i —1.1373 4 1.6494i

VI. Conclusions

A semi-analytical technique to measure liner impedance in
grazing flow has been presented and validated. This technique uses
the measurement of complex acoustic pressure at four positions
inside the duct, upstream and downstream the lined section, and
calculates the result using the mode-matching method. Benchmark
data published by NASA were used for validation. It was shown that
the pressure field described by the simple mode-matching technique
away from the liner edges is representative of the pressure, and that
the code would be capable to educe the correct liner impedance. The
results of the mode-matching educed impedance were in good
agreement with the experimental data. The effect of shear flow was
investigated and it was found that the effect is small for the chosen
duct size and frequency range of interest. The numerical solution for
the nonuniform mean flow eigenvalue problem indicates that the
approximation of plug flow is a reasonable approximation and can be
used to educe the liner properties with sufficient accuracy. Such
approximations may not be valid for higher frequencies when
multiple modes cut on.
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